Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects.

نویسندگان

  • Kyung Mi Woo
  • Victor J Chen
  • Hong-Moon Jung
  • Tae-Il Kim
  • Hong-In Shin
  • Jeong-Hwa Baek
  • Hyun-Mo Ryoo
  • Peter X Ma
چکیده

In a previous study we found that nanofibrous poly(l-lactic acid) (PLLA) scaffolds mimicking collagen fibers in size were superior to solid-walled scaffolds in promoting osteoblast differentiation and bone formation in vitro. In this study we used an in vivo model to confirm the biological properties of nanofibrous PLLA scaffolds and to evaluate how effectively they support bone regeneration against solid-walled scaffolds. The scaffolds were implanted in critical-size defects made on rat calvarial bones. Compared with solid-walled scaffolds, nanofibrous scaffolds supported substantially more new bone tissue formation, which was confirmed by micro-computed tomography measurement and von Kossa staining. Goldner's trichrome staining showed abundant collagen deposition in nanofibrous scaffolds but not in the control solid-walled scaffolds. The cells in these scaffolds were immuno-stained strongly for Runx2 and bone sialoprotein (BSP). In contrast, solid-walled scaffolds implanted in the defects were stained weakly with trichrome, Runx2, and BSP. These in vivo results demonstrate that nanofibrous architecture enhances osteoblast differentiation and bone formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

BACKGROUND Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the su...

متن کامل

Small Intestine Submucosa Facilitates the Repair of Critical Size Calvarial Defects in Mice

Introduction Selecting an appropriate biomaterial for bone tissue engineering is critical for a successful outcome. Small intestine submucosa (SIS) is an acellular, naturally occurring collagenous extracellular matrix material derived from the submucosa of porcine small intestine, which contains bioactive molecules such as TGF-β and bFGF (1). While SIS has primarily been used for the repair of ...

متن کامل

The effect of freeze-dried bone allograft and partially demineralized freeze-dried bone allograft on regeneration of rabbit calvarial bone defects: A Histological and histomorphometric study

Background and Aims: Reconstruction of osseous defects is one of the ideal goals of periodontal treatments and dental implant therapy. Different biomaterials have been used for this purpose and many studies have tried to compare and introduce the best ones. The present study aimed to evaluate the effect of PDFDB (Partially Demineralized Freeze-Dried Bone Graft) and FDBA (Freeze Dried Bone Allog...

متن کامل

Chitosan composite scaffold combined with bone marrow-derived mesenchymal stem cells for bone regeneration: in vitro and in vivo evaluation

The study aimed to develop a chitosan (CS)-based scaffold for repairing calvarial bone defects. We fabricated composite scaffolds made of CS and bovine-derived xenograft (BDX), characterized their physicochemical properties including pore size and porosity, absorption, degradation, and compressive strength, compared their efficacy to support in vitro proliferation and differentiation of human j...

متن کامل

Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects.

Craniofacial injuries can result from trauma, tumor ablation, or infection and may require multiple surgical revisions. To address the challenges associated with treating craniofacial bone defects, an ideal material should have the ability to fit complex defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2009